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ABSTRACT Using ideas suggested by some recent devel-
opments in string theory, we give here an elementary demon-
stration of one of the key steps in Douglas' celebrated proof of
the existence of solutions of the Plateau problem in n dimen-
sions.

It was recently suggested to us by T. Regge that one should
reexamine the celebrated solution by Douglas (1) of Pla-
teau's problem in light of recent developments in string the-
ory. We have followed his suggestion and wish to show in
this note how some simple facts in the representation theory
of Sl(2, R) give an elementary proof of a key step in Douglas'
ingenious argument.
We begin with an outline of the Douglas proof. It is a theo-

rem due to Weierstrass that a surface in R' is minimal if and
only if it can be represented as the real part of a complex n-
dimensional holomorphic null curve. That is, a surface is
minimal if and only if one can introduce (isothermal) coordi-
nates ul, u2 such that each of the coordinate functions xk(ul,
U2) is given as

Xk(Ul, U2) = ReFk(z), z = U1 + iU2,

where the Fs are holomorphic and

I Fk,(z)2 0. [WI
k

An extremely clear proof of this result starting from first
principles can be found in the book by Osserman (ref. 2, cf.
the lemma on page 30). Let us take this as our definition of a
minimal surface.

Plateau's problem (in its simplest form) is this: given a
simple closed curve in R', find a minimal surface spanning
it. Now ifwe had a solution of the problem, we would have a
parametrized map, h, of the unit circle, S1, into R', a param-
etrization of our curve, and the coordinates of h would be the
real parts of the boundary values of the Fk. On the other
hand, if we knew these boundary values, we could recon-
struct the Fks by use of the Poisson integral formula giving a
harmonic function in terms of its boundary values. So, as
Douglas points out, in order to solve Plateau's problem we
have to find the "correct" parametrization of the curve. Put
another way, suppose we are given a map, g, of S' into Rn.
Find, among all reparametrizations of g, an h whose harmon-
ic extension into the interior is the real part of a holomorphic
F satisfying [WI.

Douglas solves this problem as follows: For each map g
and each pair of distinct angles 01 and 02, let D(6h, 02) denote
the distance, in Rn from g(6N) to g(02) so

D((N, 02)2 = I [g9k(1) - gk(0)I2.
k

Let C(01, 02) denote the distance in the z = U1 + iu2 plane
between the corresponding points on the unit circle, so

C(01, 02)2 = lei - eiO212.

Now define

A(g)= |JfdOIdo2.

Here the integration is over all 61, 02 with (N # 02. Let H
denote the set of all such OA, 02 so that H is the torus with the
diagonal removed. The functional A(g) is invariant under re-
parametrization by S1(2, R). Indeed S1(2, R) acts transitively
on H and it is easy to check (or see ref. 3) that

C-2dOd02

is the S1(2, R) invariant measure on H (determined up to mul-
tiplicative constant).
The key observation of Douglas is that the parametriza-

tion, g, which minimizes A(g) is the "correct" parametriza-
tion giving the minimal surface. It is easy to show that A(g)
achieves a minimum. Using the Sl(2, R) invariance it is easy
to prove that the minimum is achieved at a nondegenerate
reparametrization.
The proof of this key observation is an immediate conse-

quence of the following formula reparaphrasing a portion of
Douglas' argument: For each w in the interior of the unit disk
let 4w denote the complex vector field on the unit circle given
by

-2i d
= 1 - e'w d@.

Then

4wA(g) = w2> Fk,(w)2.
k

[Dn]

This formula is to be understood as follows: We can think
of A(g) as a function on Diff S 1, the group of all reparametri-
zations of the circle. The vector field 4, can be thought of as
lying in a completion of the complexification of the Lie alge-
bra of Diff S 1, and this is the meaning of the left-hand side of
[D.], depending on the complex parameter w, lying in the
unit disk. Each function Fk on the right is the holomorphic
function on the disk whose real part is the harmonic exten-
sion into the disk of the kth coordinate, gk, of g given as a
function on the unit circle. If g is a minimum of A(g), then
any vector field on the circle must yield zero when applied to
A(g), since all variations must vanish. So the left-hand side
of [D.] vanishes at a minimum. The right-hand side must
then vanish, so Weierstrass' condition, [W], is satisfied.
Thus the heart of the proof is to establish [D.]. The sub-

script n refers to n dimensions. But the formula [D.] is a
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consequence of the corresponding formula (D1) in one di-
mension, simply by summing over the coordinates. Let V
denote the space of real (smooth) functions on the circle
modulo the constants. This space is real irreducible under
S1(2, R) and hence has at most a one-dimensional space of
invariant quadratic forms under S1(2, R), which must then
coincide with scalar multiples of the quadratic function A(.)
defined above (with now n = 1). On the other hand V carries
a symplectic form (,) invariant under all of Diff S 1, namely,

(f, g) = ffdg.

Let W denote the complexification of V. We will continue
to denote the complex extension of the symplectic form by
(,). Any quadratic form on W will be given by

Q(f) = (f, Kf),

where K is an element of the symplectic algebra of W. IfQ is
to be Sl(2, R) invariant, then K must lie in the centralizer of
S1(2, R) in the symplectic algebra of W. It is easy to see that
this centralizer is one dimensional, consisting of all multiples
of the operator whose block decomposition is given by

(I - )

Now didO commutes with K since didO belongs to S1(2,
R). Hence, up to scalar factors, we have

ewA(f) = 2(&,f, Kf) = 1 -T0 f'KfdO.

The integration is over the unit circle and f is real. So we
may write

f = F + F,

where F is the holomorphic part of f (the sum of the positive
Fourier components). Now

d = izd and dO =-dO dz z

and so

df ( dF d\F
do k dz dz7

for z = eie. Hence, up to overall scalar factors we have

£ 1-£-1fKfdo =
1

1 - e ~wf'KfdO=

relative to the decomposition (z2F'(z)2 - z2F'(z)2)dz = 21riw2F'(w)2,
W = Whol + Wantihol

of W into holomorphic and antiholomorphic parts. Thus, up
to scalar factors, we must have A(f) = (f, Kf), where

II 0
K =O

by the Cauchy integral formula. This completes the proof of
[DnJ.
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