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Abstract

In this paper we study some geometric properties of the three-
dimensional Heisenberg space H3 endowed with a left-invariant Lorentzian
metric. We write the equation of mininimal surfaces in H3 and we show
that the plane, helicoid and hyperbolic paraboloid and other surfaces are
defined by elliptic integrals verifying the equation of minimal surfaces
in H3.
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1. Introduction
It is show in [11] and [12] that modulo an automorphism of the Lie algebra

of the Heisenberg group there exist three classes of invariant lorentzian metrics
on the Heisenberg group one of which is flat.

The Lorentzian Heisenberg space H3 can be seen as the space R
3 endowed

with a left-invariant Lotrentzian metric gξ given by
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gξ = dx2 + dy2 − (dz + ξ(ydx− xdy))2, ξ ∈ R

This metric is invariant under the transformation:⎛
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Where θ, a, b and c are real numbers and

A = ξ(a sin θ − b cos θ),

B = ξ(a cos θ + b sin θ).

In the [1], M. Bekkar studied the minimal surfaces in the Riemannian-
Heisenberg space H3. In particular, in [2], M. Bekkar and T. Sari give a
classification of all these minimal surfaces ruled by lines in the space H3.

On the other hand, in [13], I. Van De Woestijne gave the equation of
minimal surfaces in the three-dimensional Minkowski space R

3
1 and he showed

that the plane, the catenoid, the helicoid and the surface of Enneper are
minimal in R

3
1.

It should be remarked that L. McNertney completely classified timelike
minimal sufaces in Minkowski space R

3
1 in her Ph.D. thesis [8] and R. Lopez

studied timelike minimal surfaces and timelike sufaces with constant mean
curvature that are foliated by circles in [7]. In particular, he showed that if a
timelike surface with non-zero constant mean curvature is foliated by circles
in parallel planes, it must be rotational.

In order to know better the Lorentz-Heisenberg space H3, we give some
geometric properties and we write the equation of minimal sufaces in this
space for a graph surface z = f(x, y)

(
1 − (fy − ξx)2

)
fxx +(1− (fx + ξy)2)fyy +2(fx + ξy)(fy −ξx)fxy = 0.

and we give somme paticular solutions.

2. Preliminaries
Let H3 be the Lorentz-Heisenberg group endowed with a left-invariant

lorentzian metric gξ given by

gξ = dx2 + dy2 − (dz + ξ(ydx− xdy))2, ξ ∈ R
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We recall that the product of H3 is given by

(x, y, z)(x, y, z) = (x + x, y + y, z + z − xy + xy).

H3 is a three-dimensional, connected, simply connected and 2-step nilpo-
tent Lie group.

The Lie algebra of H3 has an orthonormal basis ε = (e1, e2, e3) defined by

e1 =
∂

∂x
− ξy

∂

∂z
, e2 =

∂

∂y
+ ξx

∂

∂z
, e3 =

∂

∂z

One can easily check that ε satisfies gξ(ei, ej) = δij . Here δij denotes the
kronecker’s symbol

δij =

{
1 i = j
0 i �= j

We have the Lie products

[e1, e2] = 2ξe3, [e1, e3] = [e2, e3] = 0

with

gξ(e1, e1) = gξ(e2, e2) = 1, gξ(e3, e3) = −1

The Levi-Civita connection ∇ of gξ is explicitly given as follows⎧⎨
⎩

∇e1e1 = 0, ∇e2e1 = −ξe3, ∇e3e1 = ξe2

∇e1e2 = ξe3, ∇e2e2 = 0, ∇e3e2 = −ξe1

∇e1e3 = ξe2, ∇e2e3 = −ξe1, ∇e3e3 = 0

The dual coframe field θ = (θ1, θ2, θ3) associated to ε = (e1, e2, e3) is a
triplet of 1-forms which satisfies the condition θi(ej) = δij. This coframe field
is given by

θ1 = dx, θ2 = dy, θ3 = dz + ξ(ydx − xdy)

Note that the 1-form θ3 is a contact form on H3; dθ3 ∧ θ3 �= 0 if and only
if ξ �= 0.

Further the connection forms are determined by

gξ(∇Xei, ej) = θij(X),

we obtain then
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θ13 = −ξθ2, θ12 = −ξθ3, θ23 = ξθ1.

In the other hand the Ricci tensor is defined by

Ricc(X,Y ) =

3∑
i=1

εigξ(R(X, ei)Y, ei),

where X, Y are vectors fields on H3 and ε1 = ε2 = 1 and ε3 = −1.

The Ricci tensor components are

R11 = R22 = −2ξ2, R33 = 2ξ2, and Rij = 0 for i �= j

The scalar curvature k =
3∑

i=1

Rii is k = −2ξ2.

3. Minimal surface equation
Let S be an immersed surface in H3 which is given as the graph of the

function z = f(x, y). The position vector X(x, y) of S is expressed as a vector
valued function X(x, y) = (x, y, f(x, y)).

The tangent vector Xx = ∂X
∂x

and Xy = ∂X
∂y

are described by

{
Xx(x, y) = ∂

∂x
+ fx

∂
∂z

= e1 + Pe3

Xx(x, y) = ∂
∂y

+ fy
∂
∂z

= e2 + Qe3

in terms of the orthonormal frame ε. Here the functions P and Q are defined
by

P = fx + ξy, Q = fy − ξx.

The first fundamental form I of S is defined by

I = Edx2 + 2Fdxdy + Gdy2,

where

E = gξ(Xx,Xx), F = gξ(Xx,Xy) and G = gξ(Xy,Xy).

The coefficient functions E, F and G aregiven by

E = 1 − P 2, F = −PQ and G = 1 − Q2

Take a unit vector field N normal to S. Namely N is vector field along S
which satisfies
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gξ(Xx,N) =gξ(Xy,N) =0 and gξ(N,N) =1.

The second fundamental form II derived from N is defined by

II = Ldx2 + 2Mdxdy + Ndy2,

where

L = gξ(∇XxXx,N), M = gξ(∇XyXx,N) and L = gξ(∇XyXy,N).

Since S is a graph of function f , we can choose a unit normal vector field
N as

N =
Pe1 + Qe2 + e3

W
, W =

√
P 2 + Q2 − 1.

The second fundamental form derived from this unit normal vector field is
given by

L =
1

W
(fxx + 2ξPQ), M =

1

W
(fxy − ξP 2 + ξQ2) and N =

1

W
(fyy − 2ξPQ).

Let us denote the following matrix-valued functions associated to I and II
by the same letters I and II, respectively;

I =

(
E F
F G

)
, II =

(
L M
M N

)
.

The solutions λ1 and λ2 to the characteristic equation det(II−λI) = 0 are
called principal curvatures of S. Recall that the average H = (k1 + k2)/2 of k1

and k2 is called the mean curvature of S. The mean curvature H is computed
by the formula

H =
EN + GL − EFM

2 |EG − F 2| .

A surface S: z = f(x, y) is said to be minimal if H =0.
On the other hand, the Gaussian curvature KG of S is given by the formula

KG = gξ(N,N)
det II

det I

A surface S: z = f(x, y) is said to be flat if KG=0.
The differential equation H =0 for a surface S defined as a graph (x, y; f(x, y))

is called the minimal surface equation in H3. The minimal surface equation is
given explicitly by
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(Eξ)
(
1 − Q2

)
fxx + (1 − P 2)fyy + 2PQfxy = 0.

Clearly, if ξ = 0, this equation reduces to the minimal surface equation of
the Minkowski space R

3
1, [13].

The minimal surface equation (Eξ) can be rewritten as the following diver-
gence form:

∂

∂x
(
P

W
) +

∂

∂y
(
Q

W
) = 0.

4. Minimal surfaces in Lorentz-Heisenberg space H3

Minimal surfaces theory in Euclidian 3-space E3 started with constructing
and classifying funamental examples of minimal surfaces: minimal surfaces of
revolution, ruled minimal surfaces, or translation minimal surfaces ect. (For
more informatins about the minimal surface theory in E3, we refer to Nitsche’s
book [6] and Osserman’s book [10]). On the other hand in [13] I. Van De
Woestijne studied and classified the minimal surfaces of the 3-dimensional
Lorentz-Minkowski space R

3
1.

In this section we study elementary and fundamental examples of minimal
surfaces of the 3-dimensional Lorentz-Heisenberg space H3.

It is easy to observe that in H3, the linear function f(x, y) = ax + by + c
is solution to the minimal surface equation (Eξ).

Proposition 1 Let H3 be a 3-dimensional Lorentz-Heisenberg space. Then
the spacelike surface z = f(x, y) = ax + by + c is minimal for arbitrary a, b
and c.

By analogy as in Heisenberg space H3, where the hyperbolic paraboloid
is an minimal surface [1], we have in H3 also the particular minimal surface
z = f(x, y) = ±ξxy, ξ ∈ R.

Theorem 2 In H3, the surface z = f(x, y) = ±ξxy, ξ ∈ R, are minimal in
H3

4.1. Helicoids in H3

Euclidean helicoids can be characterised as minimal surface in E3 which is a
graph of a function of the form f(x, y) = g(x

y
). On the other hand, the minimal

spacelike helicoids of R
3
1 were examined in [5] and the minimal Lorentzian

helicoids of R
3
1 were examined in [woestijne]. In this subsection we look for
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minimal surfaces determined by solution f(x, y) = g(x
y
) to the minimal surface

equation in H3.

Let S be a surface which is graph of a function in the form f(x, y) = g(
y

x
).

Put u =
y

x
for x �= 0. Then we have

fx = − y

x2
g′, fy =

1

x
g′,

fxx =
2y

x3
g′ +

y2

x4
g′′, fxy = − 1

x2
g′ − y

x3
g′′, fyy =

1

x2
g′′

Here g′ et g′′ are the derivatives with respect to u.
Now we insert these data to the minimal surface equation (Eξ), then we

have the differential equation

(1 + u2)g′′ + 2ug′ = 0.

One can check easily that the general solution to this O. D. E. is given

explicitly by f(x, y) = g(
y

x
) = α tan−1(

y

x
) + β; where α, β ∈ R.

Theorem 3 The only minimal surface in H3 which has the form z = f(x, y) =

g(
y

x
) are the surfaces f(x, y) = α tan−1(

y

x
) + β, α, β ∈ R.

4.2. Axially symmetric minimal surfaces
It is easy to see the metrics gξ are invariant under rotations about the z-

axis and translation along the same axis. Based on this fundamental property,
in this subsection, we will be studying axially symmetric minimal graphs in
H3.

A surface S : z = f(x, y) is said to be axially symmetric if f depends only
on r =

√
x2 + y2.

Now let S be an axially symmetric graph of function f(x, y) = T (r). Then
we have

fx =
x

r
T ′, fy =

y

r
T ′, fxx =

y2

r3
T ′ +

x2

r2
T ′′,

fyy =
x2

r3
T ′ +

y2

r2
T ′′, fxy =

−xy

r3
T ′ +

xy

r2
T ′′

Here T ′, T ′′ are the derivatives with respect to r. From these, we get the
following minimal surface equation:

r(1 − ξ2r2)T ′′ + T ′(1 − T ′2) = 0.
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To solve this equation we put T ′ = u. Since r(1 − ξ2r2) �= 0, then we have

u′ +
u

r(1 − ξ2r2)
=

u3

r(1 − ξ2r2)
.

This is a Bernoulli’s equation. Now we put v = 1
u2 then the preceding

equation is rewritten as:

v′ − 2u

r(1 − ξ2r2)
=

−2

r(1 − ξ2r2)
.

General solutions to this equation are given by

v =
1 + cr2

1 − ξ2r2
, c > 0.

Hence

(T ′)2 =
1 − ξ2r2

1 + cr2
=

ξ2

c
· 1/ξ2 − r2

1/c + r2
, c > 0.

To solve this equation, we need separate discussions according to the values
of ξ. Our general reference on the elliptic integrals is [4] .

(1) ξ = 0 : In this case we have (T ′)2 = 1
1+cr2 , c > 0. The solution is the

axially symmetric surface

T (r) =
1√
c

cosh−1
√

cr + c1.

Hence the surface is a catenoid in Minkowski space.
(2) ξ �= 0 : The solution is the axially symmetric surface

T (r) =
|ξ|√

c

1
|ξ|∫
r

√
1/ξ2 − t2

1/c + t2
dt + c2

This elliptic integral can be expressed by the elliptic integrals in Legendre
form of first and second kind. In fact, the integral

I (t) =

t∫
b

√
b2 − x2

a2 + x2
dx

is represented as

I (u) =
√

a2 + b2(F (γ, s) − E (γ, s)) + t

√
b2 − t2

a2 + t2
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with b ≥ t > 0. Here F (γ, s) and E (γ, s) are the elliptic integrals in
Legendre form of first and second kind, respectively;

F (γ, s) =

γ∫
0

(
1 − s2 sin2 α

)− 1
2 dα, E (γ, s) =

γ∫
0

(
1 − s2 sin2 α

) 1
2 dα.

The modulus γ and the variable s are given by γ = sin−1(
t

b
)

√
b2 + a2

a2 + t2
,

s =
b√

a2 + b2
.

Theorem 4 The only axially minimal surfaces in H3 are graphs of functions
f(x, y) = T (r) with r2 = x2 + y2, where

(1) T (r) = 1√
c
cosh−1 √cr + c1, c > 0 for ξ = 0.

(2) T (r) = |ξ|√
c

1
|ξ|∫
r

√
1/ξ2−t2

1/c+t2
dt + c2, c > 0 for ξ �= 0.

4.3. Minimal translation surfaces
A similar approach to that of finding Sherch’s sufaces. We set f(x, y) =

u(x)+v(y)−ξxy and we substitute in equation (Eξ). We obtain the following

equation (
1 − (v′ − 2ξx)2

)
u′′ + (1 − u′2)v′′ − 2ξu′(v′ − 2ξx) = 0.

This equation becomes when taking v(y) = cte(
1 − 4ξ2x2

)
u′′ + 4ξ2xu′ = 0

Integrating gives us

u(x) =
c1

4ξ
(arcsin 2ξx + 2ξx

√
1 − 4ξ2x2) + c2.

The surfaces of equations

f(x, y) =
c1

4ξ
(arcsin 2ξx + 2ξx

√
1 − 4ξ2x2) − ξxy + c2.

are minimal in H3.

Theorem 5 In H3, the translation surfaces f(x, y) = c1
4ξ

(arcsin 2ξx+2ξx
√

1 − 4ξ2x2)−
ξxy + c2, c1, c2 and ξ ∈ R, are minimal .
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