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Hardy Spaces, Hyperfunctions,  
Pseudo-Differential Operators and Wavelets 

 

Collections from literature 

 

The Hardy Space and Hilbert Scales 

Let 

  tits ,2/1:    

then the Riemann Hypothesis is the statement that )(/1 s is analytic on the half-plane . 

The appropriate Hilbert space framework is the Hardy space )(2 H  of all analytic functions 

F on   such that 
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Any )(2 HF   has almost everywhere on the critical line a non-tangential boundary value 
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Thus the Hardy space )(2 H  may be identified via the isometric embedding *FF  with a 

closed subspace of the 
2L -space of the critical line with respect to the Lebesgue measure 

scaled by the factor 2/1 . We note that the operator H of the previous section applied to a 

complex-valued function produces its conjugate complex function. 

One defines the Fourier-Mellin transform    )()1,0(: 22 HLM   by: 
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,   )1,0(2Lf   ,  s   , 

whereby M  is an isometry.  

The related Fourier-Hilbert scale theory is built on the Riemann mapping theorem. This 

asserts that any open region in the complex plane, bounded by a simple closed loop, can be 

mapped holomorphically to the interior of the unit circle 

 1:  zzD      , 

the boundary being also mapped accordingly.  
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Due to a result from Hardy the mean function 








 



2

0

)(
2

1
:)( dreur i     ,     0  

is increasing, i.e. it’s either divergent or is bounded, as 1r  for  )(zu  being a regular, 

analytical function to the interior of the unit circle, i.e. on the open disk  1:  zzD .  Then 

the Hardy space )(2 DH consists of those functions, whose mean square value on the circle of 

radius remains bounded as 1r . 

Let )(2 DH 

 be the Hardy space of 
2L functions on the unit cycle with an analytical 

continuation inside the unit disk D . The inner product is defined as follows: 
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For a point Dz  let )(tez a set of functions defined by 
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Applying the Cauchy integral formula then the functions )(tez define a linear continuous 

mapping 
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of functions on  to an analytical function in D defined by: 
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This mapping C  is an isometry of the Hilbert spaces )(2 H  and )(2 DH  , where the inner 

product on )(2 H is defined by 
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The mapping C could be inverted by an operator 
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The reproducing operator CCSP

1

*:   on )(2 H is called the Szegö singular integral operator. 

Considered on )(2 H  the Szegö operator PS  is an orthogonal projection on its closed sub 

space )(2 H . For )(2 
 LH  and its closed vector subspace HLHH   )()(: 22

*  , the 

following characterization holds true 

)(2 Hu         if and only if   0u  for  0
       

.
 

Supposing that )(~
2  Hu , i.e. that u~ has Fourier coefficients with  0~ u  for 0 , then the 

element u of the Hardy space associated to u~ is the holomorphic function 
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The properties of the Hilbert transform leads to 
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Remark: For a complex valued function 2 periodic function )()()(  ivuf   its 

conjugated function can be represented by 
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Let 
nn baa ,;0
 be the Fourier coefficients of f . Then 

nn ab ,;0   are the Fourier coefficients of its 

conjugate and it holds 
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Remark: In the one-dimensional case hyperfunctions are the distributions of the dual space 
C  of the real-analytical functions of a real variable

C , defined on some connected 

segment R . In the one-dimensional case any complex-analytical function, as any 

distribution f on R , can be realized as the “jump” across the real axis of the corresponding in 

RC   holomorphic Cauchy integral function  

 


xt

dttf

i
xF

)(

2

1
:)(


, 

 given by 

dxxiyxFiyxFf
y

)())()(lim),(
10

 





     . 



4 

 

Example: The principle value )/1.(. xvP
 
of the not locally integrable function 

x

1  is the 

distribution g  defined by ([BPe]) 






 dxxx
x

dx
xg

x

)(log)(lim:),( 


       for each  cC  . 

The relation of this specific principle value to the Fourier transform is given by 

)sgn()
1

.(. ti
x

vP 









   and    )
1

.(.2)
1

.(.
x

vP
x

vP 









. 

 

Remark: The Dirac distribution “function” can be interpreted as the “jump” across the real 

axis of a corresponding holomorphic Cauchy integral function in RC  : 

Lemma: If 
 cC  and 0  then 
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In the one-dimensional case hyperfunctions are the distributions of the dual space 
C  of 

the real-analytical functions of a real variable 
C , defined on some connected segment 

R .  Any real-analytical function is 
C , but not every function 

C is analytical, e.g. it 

holds 
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From 0)0()( ne  for all n  for the Taylor series it follows   
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what’s different to )(xe  except at 0x  , i.e. 
Cxe )( is not an analytical function. The 

situation is different in case of complex-analytical functions, which are holomophic and 

analytical at the same time. This means that the dual (distribution) space 
C  of the space of 

the real-analytical functions C  characterizes the so-called hyperfunctions. 

A hyperfunction of one variable )(xf on an open set R  is a formal expression of the 

form   )0()0( ixFixF  
, where )(zF

is a function holomorphic on the upper, 

respectively lower, half-neighborhood   0)Im(  zzUU , for a complex neighborhood 

U    satisfying RU . The expression )(xf is identified with 0 if and only if 

)(zF
agrees on   as a holomorphic function. 
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If the limits exist in distribution sense, the formula gives the natural imbedding of the space of 

distributions into that of hyperfunctions. Hyperfunctions can be defined on real-analytic 

manifolds. Fourier series are typical examples of hyperfunctions on a manifold:  
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Some examples of generalized functions interpreted as hyperfunctions are 
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The Heaviside function can be characterized ([BPe] B. E. Petersen, 1.16) by 
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Pseudo-Differential Operators 

 

The class of distributions, which is defined by divergent integrals, is the class of oscillatory 

integrals leading to the concept of Pseudo-Differential operator. They are in the form 

  dxaexA xi ),()( ),(  , 

where the phase function

 

),(  x is a suitable real valued function such that the integrand 

oscillates rapidly for large   and the amplitude function ),( xa  being allowed to have 

polynomial growth in  . It would be too restrictive to require the integral to define a function. 

Therefore it’s interpreted in the distribution sense. Thus one is actually be concerned with 

integrals of the type 

   dxdxvxaevA xi )(),(, ),(  . 

The study of the Hilbert transform and the study of operational calculus for non-commuting 

operators in quantum mechanics contain some basic ingredients of the theory of pseudo-

differential operators.The Hilbert transform is a classical pseudo-differential operator with 

symbol )(sisign . Its salient features enabled the introduction of the algebra of singular 

integral operators.  

Singular distributions can be generated by Hadamard’s “finite part” of a divergent integral; a 

technique for extracting a finite part from a divergent part, building pseudo functions appying 

Cauch’s principle value concept), where it turns out that this finite part defines a singular 

distribution. We note (if 0)0(  ) the “finite part” representation 
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Holomorphic functions in the distribution sense are defined in the following way: 

 

Definition : Let  
zgz   be a function defined on a open subset CU   with values in the 

distribution space.  Then 
zg  is called a holomorphic function in CU  (or 

zgzg :)(  is called 

holomorphic in CU   in the distribution sense), if for each  cC  the function ),( sgz   is 

holomorphic in CU   in the usual sense.  

 

The phase function

 

),(  x of oscillatory integrals is a suitable real valued function such that 

the integrand oscillates rapidly for large   and the amplitude function ),( xa  being allowed 

to have polynomial growth in  . It would be too restrictive to require the integral to define a 

function. 
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Wavelet 

A wavelet is a function )()( 2 RLx   with a Fourier transform which fulfills  
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Classical Hilbert spaces in complex analysis are examples of wavelets, like Hardy space of 

2L  functions on the unit circle with analytical continuation inside the unit disk. 

The wavelet transform of a function )()( 2 RLxf   with the wavelet )()( 2 RLx 
 
is the function 
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For a wavelet  )()( 1 RLx   its Fourier transform is continuous and fulfills   
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The wavelet transform to the wavelet )()( 2 RLx 
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The continuous wavelet transform is known in pure mathematics as Calderón’s reproducing 

formula, i.e. for )()( 1
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Riemann-Stieltjes integral densities and Hyperfunctions 

 

We briefly sketch the link between Riemann-Stieltjes integral densities and hyper functions 

and distributions in order to motivate the several following definition: Let 
2
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If there exist a spectral density functions )(  , it holds 

 )()(
2

1
lim)(

10






iGiG

i




   . 

In the one-dimensional case any complex-analytical function, as any distribution f on R , can 

be realized as the “jump” across the real axis of the corresponding in RC   holomorphic 

Cauchy integral function  
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