Hardy Spaces, Hyperfunctions,
Pseudo-Differential Operators and Wavelets

Collections from literature

The Hardy Space and Hilbert Scales

Let

Q={s=0c+itjlo>1/2—c0<t <o}

then the Riemann Hypothesis is the statement that 1/ £(s)is analytic on the half-plane (2.
The appropriate Hilbert space framework is the Hardy space H?(Q) of all analytic functions
F on Q such that
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Any F e H*(Q) has almost everywhere on the critical line a non-tangential boundary value
function F*(t):=limF(c +it) e L?(R) (defined almost everywhere) such that
o112

F(o+it) dt <
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Thus the Hardy space H?(Q) may be identified via the isometric embedding F — F " with a

closed subspace of the L2 -space of the critical line with respect to the Lebesgue measure
scaled by the factor1l/ 2,z . We note that the operator H of the previous section applied to a
complex-valued function produces its conjugate complex function.

One defines the Fourier-Mellin transform M : L2 ((0,1]) — H?(Q) by:
M(f)(s) =[x f(dx + fe L2((01) . se ,
0

whereby M is an isometry.

The related Fourier-Hilbert scale theory is built on the Riemann mapping theorem. This
asserts that any open region in the complex plane, bounded by a simple closed loop, can be
mapped holomorphically to the interior of the unit circle

D={zz<1}

the boundary being also mapped accordingly.



Due to a result from Hardy the mean function

‘yd(/, v 0>0

s(0)= )

is increasing, i.e. it’s either divergent or is bounded, as r — 1 for u(z) being a regular,
analytical function to the interior of the unit circle, i.e. on the open disk p = {ZHZ\ <1}. Then

the Hardy space H,(D)consists of those functions, whose mean square value on the circle of
radius remains bounded as r —1.

Let H, (D) be the Hardy space of L? functions on the unit cycle I"with an analytical
continuation inside the unit disk D . The inner product is defined as follows:

_ 1 - ,
(u,v) = 2”i u(t)v(t)dt

For a point ze D let e, (t) a set of functions defined by

1
et)=——*
:® ze" -1

Applying the Cauchy integral formula then the functions e, (t) define a linear continuous
mapping
C:H,;(I)—>H; (D)
of functions on I"to an analytical function in D defined by:
() =[Cwlz) =(u.e,)

whereby

1
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This mapping C is an isometry of the Hilbert spaces H;(I") andH; (D), where the inner
product on H; (T") is defined by
L o (ratdr -
(u,v) = Irmg J'u(re W (re")dt

-

The mapping C could be inverted by an operator

ClH:H;(D)—>H, () , u(t):lma(re“)



The reproducing operator S, := C;'C on H?(I)is called the Szegd singular integral operator.
Considered on H;(I") the Szego operator S, is an orthogonal projection on its closed sub
space H, (') . For H = L3(I") and its closed vector subspace H":=H; () c L) =H, the

following characterization holds true

ueH,(I) ifand only if u, =0 for v <0

Supposing thati € H;(I), i.e. that U has Fourier coefficients with U, =0 for v <o, then the

element u of the Hardy space associated to U is the holomorphic function

u@) =y uz" |g<1-
0
The properties of the Hilbert transform leads to
HuD@=Yuz" |z <1 -
1

Remark: For a complex valued function 27 — periodic function f (¢) = u(p) +iv(p) its
conjugated function can be represented by

f () = — lim —— — f(p—Poot Sdg= 1 ?=94g -
fp)=-lim— Mf((p+ 9 - flp-eot-dg=— Oi” f(9cot——ds
Let a,;a,,b, be the Fourier coefficients of f . Then 0;-b_,a, are the Fourier coefficients of its
conjugate and it holds

LTt o=24 L[t pdp  OSP Lffr(dp-3a+b: -
% 2 7y Ty =" "

Remark: In the one-dimensional case hyperfunctions are the distributions of the dual space

C“ of the real-analytical functions of a real variable C“, defined on some connected
segment « R, In the one-dimensional case any complex-analytical function, as any

distribution f on R, can be realized as the “jump” across the real axis of the corresponding in

C — R holomorphic Cauchy integral function
1 ¢ f(odt

F(X)=—
) 27i? t—X

given by

(f.p)= Iirr(}l T F(x+iy) = F(x—=1iy))p(x)dx



Example: The principle value py.(1/x) of the not locally integrable function 1 isthe
X

distribution g defined by ([BPe])

dx

X _ Ilog\xw'(x)dx for each peCl .
X —0

(9,9)=lim | p(x)

Xz

The relation of this specific principle value to the Fourier transform is given by

[P.v.(i)T — _izsgn(t) and [P.v.()l()T =—272P.V.(%)'

Remark: The Dirac distribution “function” can be interpreted as the “jump” across the real
axis of a corresponding holomorphic Cauchy integral function in c — r:

Lemma: If ¢ e C. and p>0 then

- Targ(x+ iy)e'(x)dx = T 5 y

2
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p(x)dx

In the one-dimensional case hyperfunctions are the distributions of the dual space C ~“ of
the real-analytical functions of a real variable C“, defined on some connected segment

— R. Any real-analytical function is € C”, but not every function € C~ is analytical, e.g. it
holds

1

e(x): eX2X>86Cw but e(X)eC“’ .

0 X=

From e™(0) =0 for all n for the Taylor series it follows

0
—x" =0
ZO: n! X
what's different to e(x) except at x=0 , i.e. &(x) ¢ C”is not an analytical function. The
situation is different in case of complex-analytical functions, which are holomophic and

analytical at the same time. This means that the dual (distribution) space C™ of the space of
the real-analytical functions c~ characterizes the so-called hyperfunctions.

A hyperfunction of one variable f(x)on an open set <R is a formal expression of the
form F_(x+i0)—F (x—i0), where F,(z)is a function holomorphic on the upper,
respectively lower, half-neighborhood U, =u ~ {z/Im(z) > 0}, for a complex neighborhood

U - Q satisfyingu ~nrR=0. The expression f(X)is identified with O if and only if

F. (z) agrees on (2 as a holomorphic function.



If the limits exist in distribution sense, the formula gives the natural imbedding of the space of
distributions into that of hyperfunctions. Hyperfunctions can be defined on real-analytic
manifolds. Fourier series are typical examples of hyperfunctions on a manifold:

*) Zave“" converges as a hyperfunction ifand only if a, = O(egM) for all ¢ > 0.

veZ

Some examples of generalized functions interpreted as hyperfunctions are

i) Dirac’s delta function 5(x):—l[ 1 1 }:ﬂ"mTeakcoskxdk , a—>0
27 [ x+i0  x-i0 5
ii) Heaviside’s function Y (%) =—%[Iog(—x—iO)—Iog(—x+i0)]= —%Iog(—z) .
7 b

The Heaviside function can be characterized ([BPe] B. E. Petersen, 1.16) by

lim log(x+iy) =log x+izY for y »0* and Y(x)=Y(-x)

ii) i = ) for gz
T 2isinzd
1
X" =+—F(2)"In(Fz) for i=mez

27
iv) the Feynmann propagator (Green'’s function) is the solution
1
—(S¥V-§"
27zi( )
of the distribution wave equation
62

(E—A)S(t, X)=0(t)d" (x)

e—inikxdkdw
—‘k‘ —ig)(a)—‘k‘ —ig)

with 22(27)"S (40 = | "

e—iwt+ikxdkdw
(a)—‘k‘ +ie)(a)—‘k‘+i£)

27(27)" S (t,X) = ”



Pseudo-Differential Operators

The class of distributions, which is defined by divergent integrals, is the class of oscillatory
integrals leading to the concept of Pseudo-Differential operator. They are in the form

A(x) = [e*7a(x,0)d0 ,

where the phase function ¢(x,#)is a suitable real valued function such that the integrand
oscillates rapidly for large |g| and the amplitude function a(x, ¢) being allowed to have
polynomial growth in @. It would be too restrictive to require the integral to define a function.

Therefore it’s interpreted in the distribution sense. Thus one is actually be concerned with
integrals of the type

(AV) = j j e Na(x, O)v(x)dxd O -

The study of the Hilbert transform and the study of operational calculus for non-commuting
operators in guantum mechanics contain some basic ingredients of the theory of pseudo-
differential operators.The Hilbert transform is a classical pseudo-differential operator with
symbol—isign(s) . Its salient features enabled the introduction of the algebra of singular

integral operators.

Singular distributions can be generated by Hadamard’s “finite part” of a divergent integral; a
technique for extracting a finite part from a divergent part, building pseudo functions appying
Cauch’s principle value concept), where it turns out that this finite part defines a singular
distribution. We note (if ¢(0) # 0) the “finite part” representation

Fpi@dt=m[(_jw+!)¢f)dt+z¢(0)logs} :

Holomorphic functions in the distribution sense are defined in the following way:

Definition : Let z — g, be a function defined on a open subset U — C with values in the
distribution space. Then g, is called a holomorphic function in u = (or g(z) =g, is called
holomorphic in U = C in the distribution sense), if for each ¢ < Cc the function z - (g,¢) is
holomorphic in U < C in the usual sense.

The phase function ¢(x,#) of oscillatory integrals is a suitable real valued function such that
the integrand oscillates rapidly for large |9 and the amplitude function a(x, 9) being allowed

to have polynomial growth in @. It would be too restrictive to require the integral to define a
function.



Wavelet

A wavelet is a function y(x) e L,(R) with a Fourier transform which fulfills

2
dow < oo

O<c, =27

]

Classical Hilbert spaces in complex analysis are examples of wavelets, like Hardy space of
L, functions on the unit circle with analytical continuation inside the unit disk.

The wavelet transform of a function f (x) e L, (R) with the wavelet y(x) € L,(R) is the function

W, [flab)=

F ()7, (dt = jfm 1‘1444m, acR-{o}beR

ol yol

For a wavelet (x)eL, (R) its Fourier transform is continuous and fulfills

0-p(0 = [ydo

The wavelet transform to the wavelet y/(x) e L, (R)

dadb
W, 1L, (R) > L,(R*,—-),

is isometric and for the adjoint operator

. dadb
M@:LARZ;;F—)—>LAR)

W Lol Hg(t)jg Dt EF

itholds w,w, =1d and w,w, =p_ .

The continuous wavelet transform is known in pure mathematics as Calderdn’s reproducing
formula, i.e. for y(x) e L, (R") real and radial with vanishing mean, i.e.

d—l-

1
For Vi) =)
a a
it holds Calderén’s formula

f=Jt//a*l//a*fdf:
0



Riemann-Stieltjes integral densities and Hyperfunctions

We briefly sketch the link between Riemann-Stieltjes integral densities and hyper functions
and distributions in order to motivate the several following definition: Let o(2):=[E,{’ in

A€(—mo0) be a bounded variation spectral function, which builds according to the Green
function

the two holomorph Cauchy-Riemann representation in Re(s) > 0, Re(s) < 0by

1 B 1
A—=(x+iy) A-(x-1iy)

G(x+iy)—G(x—iy)=I[ :|d0'(ﬂ)

Then the Stieltjes inverse formula is valid for continuous points aandb, i.e.
1 b
o(b) —o(a)=Ilim —_IG(X+ iy) - G(x—iy)dx *
y=0 27 ¢
If there exist a spectral density functions¢’(1), it holds

7(0)= lim - [6(2+i4) - 6(2- )]

In the one-dimensional case any complex-analytical function, as any distribution f on R, can

be realized as the “jump” across the real axis of the corresponding in ¢ — R holomorphic
Cauchy integral function

1 g f(dt

F(X)=—
) 277 t—X

given by

(f,p)= |irT011 T F(x+1y) — F(x—iy))o(x)dx



